Advertisement

Distinctive Clinical Correlates of Small Intestinal Bacterial Overgrowth with Methanogens

  • Katelyn E. Madigan
    Affiliations
    Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
    Search for articles by this author
  • Richa Bundy
    Affiliations
    Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
    Search for articles by this author
  • Richard B. Weinberg
    Correspondence
    Reprint requests Address requests for reprints to: Richard B. Weinberg, MD, Wake Forest School of Medicine, Department of Internal Medicine, One Medical Center Boulevard, Winston-Salem, North Carolina 27157. fax: (336) 713-7322.
    Affiliations
    Department of Internal Medicine-Gastroenterology, Wake Forest School of Medicine, Winston Salem, North Carolina

    Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
    Search for articles by this author
Published:September 28, 2021DOI:https://doi.org/10.1016/j.cgh.2021.09.035

      Background and Aims

      Most patients with small intestinal bacterial overgrowth (SIBO) produce hydrogen by fermentation of dietary carbohydrates; however, ∼30% of patients with SIBO are colonized with Archaea, anaerobic organisms that produce methane. SIBO is associated with a plethora of symptoms and conditions, but their diagnostic significance is unclear. We aimed to determine if specific symptoms and conditions are associated with methanogenic SIBO.

      Methods

      This study received institutional review board approval (IRB00059873). In this retrospective cross-sectional study, we queried a database of glucose breath tests conducted for suspected SIBO at our tertiary care medical center, which included data on the presence or absence of gastrointestinal symptoms and conditions often associated with SIBO. All patients had undergone a standardized breath testing protocol.

      Results

      In a cohort of 1461 patients, 33.1% were SIBO positive; of these, 49.8% produced only hydrogen, 38.8% produced only methane, and 11.4% produced both gases. The following factors distinguished patients with hydrogen-producing SIBO, but not methanogenic SIBO, from SIBO-negative patients: vitamin B12 deficiency (odds ratio, 1.44; confidence interval [CI], 1.01–2.06; P = .046), Roux-en-Y gastric bypass (odds ratio, 2.14; CI, 1.09–4.18; P = .027), cholecystectomy (odds ratio, 1.42; CI, 1.06–1.91; P = .020), and diabetes (odds ratio, 1.59; CI, 1.13–2.24; P = .008). The absence of vitamin B12 deficiency was the sole discriminating factor between methanogenic and hydrogenic SIBO (odds ratio, 0.57; CI, 0.34–0.97; P = .038).

      Conclusions

      Patients with SIBO caused by methane-producing Archaea display a different spectrum of associated symptoms and clinical conditions compared with patients with SIBO caused by hydrogen-producing bacteria, particularly a lower incidence of vitamin B12 deficiency.

      Graphical abstract

      Keywords

      Abbreviations used in this paper:

      AUC (area under the curve), CI (confidence interval), CH4 (methane), GI (gastrointestinal), H2 (hydrogen), RYGB (Roux-en-Y gastric bypass), SIBO (small intestinal bacterial overgrowth)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cresci G.
        • Bawden A.
        Gut microbiome: what we do and don't know.
        Nutr Clin Pract. 2015; 30: 734-746
        • Allaband C.
        • McDonald D.
        • Vázquez-Baeza Y.
        • et al.
        Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians.
        Clin Gastroenterol Hepatol. 2019; 17: 218-230
        • Sundin O.H.
        • Mendoza-Ladd A.
        • Zeng M.
        • et al.
        The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon.
        BMC Microbiol. 2017; 17: 160
        • Quigley E.M.M.
        The spectrum of small intestinal bacterial overgrowth (SIBO).
        Curr Gastroenterol Rep. 2019; 21: 3
        • Miazga A.
        • Osiński M.
        • Cichy W.
        • et al.
        Current views on the etiopathogenesis, clinical manifestation, diagnostics, treatment, and correlation with other nosological entities of SIBO.
        Adv Med Sci. 2015; 60: 118-124
        • Rao S.S.
        • Bhagatwala J.
        Small intestinal bacterial overgrowth: clinical features and therapeutic management.
        Clin Transl Gastroenterol. 2019; 10e00078
        • Quigley E.M.
        • Murray J.A.
        • Pimentel M.
        AGA clinical practice update on small intestinal bacterial overgrowth: expert review.
        Gastroenterol. 2020; 159: 1526-1532
        • Whitman W.B.
        • Bowen T.I.
        • Boone D.R.
        The methanogenic bacteria.
        in: Dworkin M. Falkow S. Rosenberg E. The prokaryotes: a handbook on the biology of bacteria. Archaea. Bacteria: Firmicutes, Actinomycetes. 3rd ed. Volume 3. Springer, New York2006: 167-207
        • Koskinen K.
        • Pausan M.R.
        • Perras A.K.
        • et al.
        First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin.
        mBio. 2017; 8 (e00824–00817)
        • Borrel G.
        • Brugère J.F.
        • Gribaldo S.
        • et al.
        The host-associated archaeome.
        Nat Rev Microbiol. 2020; 18: 622-636
        • Dridi B.
        • Fardeau M.L.
        • Ollivier B.
        • et al.
        The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea.
        Antimicrob Chemother. 2011; 66: 2038-2044
        • Degnan P.H.
        • Natasha N.A.
        • Mok K.C.
        • et al.
        Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut.
        Cell Host Microbe. 2014; 15: 47-57
        • Degnan P.H.
        • Taga M.E.
        • Goodman A.L.
        Vitamin B12 as a modulator of gut microbial ecology.
        Cell Metabolism. 2014; 20: 769-778
        • Giannella R.A.
        • Broitman S.A.
        • Zamcheck N.
        Competition between bacteria and intrinsic factor for vitamin B12: implications for vitamin B12 malabsorption in intestinal bacterial overgrowth.
        Gastroenterol. 1972; 62: 255-260
        • Rodionov D.A.
        • Arzamasov A.A.
        • Khoroshkin M.S.
        • et al.
        Micronutrient requirements and sharing capabilities of the human gut microbiome.
        Front Microbiol. 2019; 10: 1-22
        • Rowley C.A.
        • Kendall M.M.
        To B12 or not to B12: five questions on the role of cobalamin in host-microbial interactions.
        PLoS Pathog. 2019; 15e1007479
        • Triantafyllou K.
        • Chang C.
        • Pimentel M.
        Methanogens, methane, and gastrointestinal motility.
        J Neurogastroenterol Motil. 2014; 20: 31-40
        • Saad R.J.
        • Chey W.D.
        Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy.
        Clin Gastroenterol Hepatol. 2014; 12: 1964-1972
        • Rezaie A.
        • Pimentel M.
        • Rao S.S.
        How to test and treat small intestinal bacterial overgrowth: an evidence-based approach.
        Curr Gastroenterol Rep. 2016; 18: 8
        • de Lacy Costello B.P.
        • Ledochowski M.
        • Ratcliffe N.M.
        The importance of methane breath testing: a review.
        J Breath Res. 2013; 7024001
        • Rezaie A.
        • Buresi M.
        • Lembo A.
        • et al.
        Hydrogen and methane-based breath testing in gastrointestinal disorders: the North American Consensus.
        Am J Gastroenterol. 2017; 112: 775-784
        • Kunkel D.
        • Basseri R.J.
        • Makhani M.D.
        • et al.
        Methane on breath testing is associated with constipation: a systematic review and meta-analysis.
        Dig Dis Sci. 2011; 56: 1612-1618
        • Gottlieb K.
        • Wacher V.
        • Sliman J.
        • et al.
        Inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders.
        Aliment Pharmacol Ther. 2016; 43: 197-212
        • Sachdeva S.
        • Rawat A.K.
        • Reddy R.S.
        Small intestinal bacterial overgrowth (SIBO) in irritable bowel syndrome: frequency and predictors.
        J Gastroenterol Hepatol. 2011; 26: 135-138
        • Chen B.
        • Kim J.J.
        • Zhang Y.
        • et al.
        Prevalence and predictors of small intestinal bacterial overgrowth in irritable bowel syndrome: a systematic review and meta-analysis.
        J Gastroenterol. 2018; 53: 807-818
        • Mihajlovski A.
        • Doré J.
        • Levene F.
        • et al.
        Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity.
        Environ Microbiol Rep. 2010; 2: 272-280
        • Makhani M.
        • Yang J.
        • Mirocha J.
        • et al.
        Factor analysis demonstrates a symptom cluster related to methane and non-methane production in irritable bowel syndrome.
        J Clin Gastroenterol. 2011; 45: 40-44
        • Dukowicz A.C.
        • Lacy B.E.
        • Levine G.M.
        Small intestinal bacterial overgrowth: a comprehensive review.
        Gastroenterol Hepatol. 2007; 3: 112-122
        • Allen R.H.
        • Stabler S.P.
        Identification and quantitation of cobalamin and cobalamin analogues in human feces.
        Am J Clin Nutr. 2008; 87: 1324-1335
        • Samuel B.S.
        • Hansen E.E.
        • Manchester J.K.
        • et al.
        Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.
        Proc Natl Acad Sci U S A. 2007; 104: 10643-10648
        • Malagelada J.R.
        • Go V.L.
        • Summerskill W.H.
        • et al.
        Bile acid secretion and biliary bile acid composition altered by cholecystectomy.
        Am J Dig Dis. 1973; 18: 455-459
        • Roda E.
        • Aldini R.
        • Mazzella G.
        • et al.
        Enterohepatic circulation of bile acids after cholecystectomy.
        Gut. 1978; 19: 640-649
        • Di Ciaula A.
        • Molina-Molina E.
        • Bonfrate L.
        • et al.
        Gastrointestinal defects in gallstone and cholecystectomized patients.
        Eur J Clin Invest. 2019; 49e13066
        • Floch M.H.
        • Gershengoren W.
        • Elliott S.
        • et al.
        Bile acid inhibition of the intestinal microflora: a function for simple bile acids?.
        Gastroenterology. 1971; 61: 228-233
        • Begley M.
        • Gahan C.G.M.
        • Hill C.
        The interaction between bacteria and bile.
        FEMS Microbiol Rev. 2005; 29: 625-651
        • Hofmann A.F.
        • Eckmann L.
        How bile acids confer gut mucosal protection against bacteria.
        Proc Natl Acad Sci U S A. 2006; 103: 4333-4334
        • Sung H.
        • Paik C.
        • Chung W.
        • et al.
        Small intestinal bacterial overgrowth diagnosed by glucose hydrogen breath test in post-cholecystectomy patients.
        J Neurogastroenterol Motil. 2015; 21: 545-551
        • Kim D.B.
        • Paik C.N.
        • Kim Y.J.
        • et al.
        Positive glucose breath tests in patients with hysterectomy, gastrectomy, and cholecystectomy.
        Gut Liver. 2017; 11: 237-242
        • Miller T.I.
        • Wolin M.J.
        • de Macario E.C.
        • et al.
        Isolation of Methanobrevibacter smithii from human feces.
        Appl Environ Microbiol. 1982; 43: 227-232
        • Jones B.V.
        • Begley M.
        • Hill C.
        • et al.
        Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.
        PNAS. 2008; 105: 13580-13585
        • Yan L.H.
        • Mu B.
        • Pan D.
        • et al.
        Association between small intestinal bacterial overgrowth and beta-cell function of type 2 diabetes.
        J Int Med Res. 2020; 48: 1-10
        • Okubo H.
        • Nakatsu Y.
        • Sakoda H.
        • et al.
        Mosapride citrate improves nonalcoholic steatohepatitis with increased fecal lactic acid bacteria and plasma glucagon-like peptide-1 level in a rodent model.
        Am J Physiol Gastrointest Liver Physiol. 2015; 308: G151-G158
        • Deloose E.
        • Janssen P.
        • Depoortere I.
        • et al.
        The migrating motor complex: control mechanisms and its role in health and disease.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 271-285
        • Dooley P.
        • Newihi H.M.
        • Zeidler A.
        • et al.
        Abnormalities of the migrating motor complex in diabetics with autonomic neuropathy and diarrhea.
        Scand J Gastroenterol. 1988; 23: 217-223
        • Pimentel M.
        • Soffer E.E.
        • Chow E.J.
        • et al.
        Lower frequency of MMC is found in IBS subjects with abnormal lactulose breath test, suggesting bacterial overgrowth.
        Dig Dis Sci. 2002; 47: 2639-2643
        • Ojetti V.
        • Pitocco D.
        • Scarpellini E.
        • et al.
        Small bowel bacterial overgrowth and type 1 diabetes.
        Eur Rev Med Pharmacol Sci. 2009; 13: 419-423
        • Schwiertz A.
        • Taras D.
        • Schäfer K.
        • et al.
        Microbiota and SCFA in lean and overweight healthy subjects.
        Obesity. 2009; 18: 190-195
        • Million M.
        • Angelakis E.
        • Maraninchi M.
        • et al.
        Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli.
        Int J Obes. 2013; 37: 1460-1466
        • Sweeney T.E.
        • Morton H.J.
        The human gut microbiome: a review of the effect of obesity and surgically induced weight loss.
        JAMA Surg. 2013; 148: 563-569
        • Dolan R.
        • Baker J.
        • Harer K.
        • et al.
        Small intestinal bacterial overgrowth: clinical presentation in patients with Roux-en-Y gastric bypass.
        Obes Surg. 2021; 31: 564-569
        • Zhang H.
        • DiBaiseb J.K.
        • Zuccoloc A.
        • et al.
        Human gut microbiota in obesity and after gastric bypass.
        PNAS. 2009; 106: 2365-2370
        • Yu D.
        • Cheeseman F.
        • Vanner S.
        Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS.
        Gut. 2011; 60: 334-340

      References

        • Zhu H.
        • Hart C.A.
        • Sales D.
        • et al.
        Bacterial killing in gastric juice-effect of pH and pepsin on Escherichia coli and Helicobacter pylori.
        J Med Microbiol. 2006; 55: 1265-1270
        • Nehra A.
        • Alexander J.
        • Loftus C.
        • et al.
        Proton pump inhibitors: review of emerging concerns.
        Mayo Clin Proc. 2018; 93: 240-246
        • Su T.
        • Lai S.
        • Lee A.
        • et al.
        Meta-analysis: proton pump inhibitors moderately increase the risk of small intestinal bacterial overgrowth.
        J Gastroenterol. 2018; 53: 27-36
        • Ratuapli S.
        • Ellington T.
        • O’Neill M.
        • et al.
        Proton pump inhibitor therapy use does not predispose to small intestinal bacterial overgrowth.
        Am J Gastroenterol. 2012; 107: 730-735
        • Lam J.R.
        • Schneider J.L.
        • Zhao W.
        • et al.
        Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency.
        JAMA. 2013; 310: 2435-2442
        • Giannella R.A.
        • Broitman S.A.
        • Zamcheck N.
        Competition between bacteria and intrinsic factor for vitamin B12: implications for vitamin B12 malabsorption in intestinal bacterial overgrowth.
        Gastroenterology. 1972; 62: 255-260
        • Rodionov D.A.
        • Arzamasov A.A.
        • Khoroshkin M.S.
        • et al.
        Micronutrient requirements and sharing capabilities of the human gut microbiome.
        Front Microbiol. 2019; 10: 1-22