Advertisement

The Microbiome in Patients With Inflammatory Diseases

  • Hari K. Somineni
    Affiliations
    Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia

    Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
    Search for articles by this author
  • Subra Kugathasan
    Correspondence
    Reprint requests Address requests for reprints to: Subra Kugathasan, MD, Division of Pediatric Gastroenterology, Emory University School of Medicine & Children’s Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, Georgia 30322. fax: (404) 727-4069.
    Affiliations
    Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia

    Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
    Search for articles by this author
Published:September 06, 2018DOI:https://doi.org/10.1016/j.cgh.2018.08.078
      Microbial dysbiosis characterized by alterations in the structure and function of the gut microbiome has long been implicated in the pathogenesis of inflammatory bowel disease (IBD). To date, most human IBD microbiome studies are focused on microbial composition rather than function, however, with the latest technical advancements complemented by the rapidly dropping costs, studies focusing on the functional aspects of microbial dysbiosis are on the rise. Several compelling and complimentary pieces of evidence support the notion that the gut microbiome and their metabolites play an important role in the development of IBD. Data from preclinical studies overwhelmingly support the notion that changes in the gut microbiome causally underlie IBD pathogenesis. Hence, there is considerable interest in modulating the state and function of the gut microbiome to achieve therapeutic benefits. While the causal potential of the gut microbiome remains an active area of current research in the clinical setting, accumulating correlative evidence support the view that microbial dysbiosis parallels increased incidence of IBD. In this review, we intend to provide a brief overview of the current human IBD microbiome findings, describe the cause-effect relationships between the gut microbiome and IBD, and discuss the possibility of using microbiome-based approaches in the diagnosis, therapy, and management of disease. In addition, the potential role of microbiome-based interventions in the treatment of human IBD is also discussed.

      Keywords

      Abbreviations used in this paper:

      CD (Crohn’s disease), FMT (fecal microbiota transplantation), IBD (inflammatory bowel disease), UC (ulcerative colitis)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Molodecky N.A.
        • Soon I.S.
        • Rabi D.M.
        • et al.
        Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review.
        Gastroenterology. 2012; 142 (quiz e30): 46-54 e42
        • Rocchi A.
        • Benchimol E.I.
        • Bernstein C.N.
        • et al.
        Inflammatory bowel disease: a Canadian burden of illness review.
        Can J Gastroenterol. 2012; 26: 811-817
        • Hammer T.
        • Nielsen K.R.
        • Munkholm P.
        • et al.
        The Faroese IBD study: incidence of inflammatory bowel diseases across 54 years of population-based data.
        J Crohns Colitis. 2016; 10: 934-942
        • Manichanh C.
        • Borruel N.
        • Casellas F.
        • et al.
        The gut microbiota in IBD.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 599-608
        • Kaplan G.G.
        The global burden of IBD: from 2015 to 2025.
        Nat Rev Gastroenterol Hepatol. 2015; 12: 720-727
        • Ng S.C.
        • Shi H.Y.
        • Hamidi N.
        • et al.
        Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.
        Lancet. 2018; 390: 2769-2778
        • Benchimol E.I.
        • Manuel D.G.
        • Guttmann A.
        • et al.
        Changing age demographics of inflammatory bowel disease in Ontario, Canada: a population-based cohort study of epidemiology trends.
        Inflamm Bowel Dis. 2014; 20: 1761-1769
        • Benchimol E.I.
        • Guttmann A.
        • Griffiths A.M.
        • et al.
        Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data.
        Gut. 2009; 58: 1490-1497
        • Jostins L.
        • Ripke S.
        • Weersma R.K.
        • et al.
        Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
        Nature. 2012; 491: 119-124
        • Cho J.H.
        The genetics and immunopathogenesis of inflammatory bowel disease.
        Nat Rev Immunol. 2008; 8: 458-466
        • Ogura Y.
        • Bonen D.K.
        • Inohara N.
        • et al.
        A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
        Nature. 2001; 411: 603-606
        • Hugot J.P.
        • Chamaillard M.
        • Zouali H.
        • et al.
        Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
        Nature. 2001; 411: 599-603
        • Inohara N.
        • Ogura Y.
        • Fontalba A.
        • et al.
        Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease.
        J Biol Chem. 2003; 278: 5509-5512
        • Hampe J.
        • Franke A.
        • Rosenstiel P.
        • et al.
        A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1.
        Nat Genet. 2007; 39: 207-211
        • Homer C.R.
        • Richmond A.L.
        • Rebert N.A.
        • et al.
        ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis.
        Gastroenterology. 2010; 139 (1641.e1–2): 1630-1641
        • Travassos L.H.
        • Carneiro L.A.
        • Ramjeet M.
        • et al.
        Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry.
        Nat Immunol. 2010; 11: 55-62
        • Boada-Romero E.
        • Serramito-Gomez I.
        • Sacristan M.P.
        • et al.
        The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1.
        Nat Commun. 2016; 7: 11821
        • Parkes M.
        • Barrett J.C.
        • Prescott N.J.
        • et al.
        Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility.
        Nat Genet. 2007; 39: 830-832
        • Bevins C.L.
        • Salzman N.H.
        Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.
        Nat Rev Microbiol. 2011; 9: 356-368
        • De Filippo C.
        • Cavalieri D.
        • Di Paola M.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696
        • Schnorr S.L.
        • Candela M.
        • Rampelli S.
        • et al.
        Gut microbiome of the Hadza hunter-gatherers.
        Nat Commun. 2014; 5: 3654
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227
        • Martinez I.
        • Stegen J.C.
        • Maldonado-Gomez M.X.
        • et al.
        The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes.
        Cell Rep. 2015; 11: 527-538
        • Bernstein C.N.
        • Shanahan F.
        Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases.
        Gut. 2008; 57: 1185-1191
        • Hviid A.
        • Svanstrom H.
        • Frisch M.
        Antibiotic use and inflammatory bowel diseases in childhood.
        Gut. 2011; 60: 49-54
        • Gevers D.
        • Kugathasan S.
        • Denson L.A.
        • et al.
        The treatment-naive microbiome in new-onset Crohn's disease.
        Cell Host Microbe. 2014; 15: 382-392
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • et al.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci U S A. 2007; 104: 13780-13785
        • Sokol H.
        • Pigneur B.
        • Watterlot L.
        • et al.
        Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.
        Proc Natl Acad Sci U S A. 2008; 105: 16731-16736
        • Darfeuille-Michaud A.
        • Neut C.
        • Barnich N.
        • et al.
        Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease.
        Gastroenterology. 1998; 115: 1405-1413
        • Petersen A.M.
        • Nielsen E.M.
        • Litrup E.
        • et al.
        A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease.
        BMC Microbiol. 2009; 9: 171
        • Varela E.
        • Manichanh C.
        • Gallart M.
        • et al.
        Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis.
        Aliment Pharmacol Ther. 2013; 38: 151-161
        • Joossens M.
        • Huys G.
        • Cnockaert M.
        • et al.
        Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives.
        Gut. 2011; 60: 631-637
        • Ohkusa T.
        • Okayasu I.
        • Ogihara T.
        • et al.
        Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis.
        Gut. 2003; 52: 79-83
        • Strauss J.
        • Kaplan G.G.
        • Beck P.L.
        • et al.
        Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host.
        Inflamm Bowel Dis. 2011; 17: 1971-1978
        • Wagner J.
        • Maksimovic J.
        • Farries G.
        • et al.
        Bacteriophages in gut samples from pediatric Crohn's disease patients: metagenomic analysis using 454 pyrosequencing.
        Inflamm Bowel Dis. 2013; 19: 1598-1608
        • Norman J.M.
        • Handley S.A.
        • Baldridge M.T.
        • et al.
        Disease-specific alterations in the enteric virome in inflammatory bowel disease.
        Cell. 2015; 160: 447-460
        • Sokol H.
        • Leducq V.
        • Aschard H.
        • et al.
        Fungal microbiota dysbiosis in IBD.
        Gut. 2017; 66: 1039-1048
        • Liguori G.
        • Lamas B.
        • Richard M.L.
        • et al.
        Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients.
        J Crohns Colitis. 2016; 10: 296-305
        • Ott S.J.
        • Kuhbacher T.
        • Musfeldt M.
        • et al.
        Fungi and inflammatory bowel diseases: Alterations of composition and diversity.
        Scand J Gastroenterol. 2008; 43: 831-841
        • Chehoud C.
        • Albenberg L.G.
        • Judge C.
        • et al.
        Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2015; 21: 1948-1956
        • Li J.
        • Butcher J.
        • Mack D.
        • et al.
        Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease.
        Inflamm Bowel Dis. 2015; 21: 139-153
        • Rigottier-Gois L.
        Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis.
        ISME J. 2013; 7: 1256-1261
        • Khan K.J.
        • Ullman T.A.
        • Ford A.C.
        • et al.
        Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis.
        Am J Gastroenterol. 2011; 106: 661-673
        • Wang S.L.
        • Wang Z.R.
        • Yang C.Q.
        Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease.
        Exp Ther Med. 2012; 4: 1051-1056
        • Casellas F.
        • Borruel N.
        • Papo M.
        • et al.
        Antiinflammatory effects of enterically coated amoxicillin-clavulanic acid in active ulcerative colitis.
        Inflamm Bowel Dis. 1998; 4: 1-5
        • Lepage P.
        • Hasler R.
        • Spehlmann M.E.
        • et al.
        Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis.
        Gastroenterology. 2011; 141: 227-236
        • Harper P.H.
        • Lee E.C.
        • Kettlewell M.G.
        • et al.
        Role of the faecal stream in the maintenance of Crohn's colitis.
        Gut. 1985; 26: 279-284
        • Rutgeerts P.
        • Goboes K.
        • Peeters M.
        • et al.
        Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum.
        Lancet. 1991; 338: 771-774
        • Janowitz H.D.
        • Croen E.C.
        • Sachar D.B.
        The role of the fecal stream in Crohn's disease: an historical and analytic review.
        Inflamm Bowel Dis. 1998; 4: 29-39
        • D'Haens G.R.
        • Geboes K.
        • Peeters M.
        • et al.
        Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum.
        Gastroenterology. 1998; 114: 262-267
        • Kugathasan S.
        • Denson L.A.
        • Walters T.D.
        • et al.
        Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study.
        Lancet. 2017; 389: 1710-1718
        • Shaw K.A.
        • Bertha M.
        • Hofmekler T.
        • et al.
        Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease.
        Genome Med. 2016; 8: 75
        • Halfvarson J.
        • Brislawn C.J.
        • Lamendella R.
        • et al.
        Dynamics of the human gut microbiome in inflammatory bowel disease.
        Nat Microbiol. 2017; 2: 17004
        • Haberman Y.
        • Tickle T.L.
        • Dexheimer P.J.
        • et al.
        Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.
        J Clin Invest. 2014; 124: 3617-3633
        • Ananthakrishnan A.N.
        • Luo C.
        • Yajnik V.
        • et al.
        Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases.
        Cell Host Microbe. 2017; 21: 603-610.e3
        • Scaldaferri F.
        • Gerardi V.
        • Mangiola F.
        • et al.
        Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update.
        World J Gastroenterol. 2016; 22: 5505-5511
        • Rembacken B.J.
        • Snelling A.M.
        • Hawkey P.M.
        • et al.
        Non-pathogenic Escherichia coli vs mesalazine for the treatment of ulcerative colitis: a randomised trial.
        Lancet. 1999; 354: 635-639
        • Ishikawa H.
        • Akedo I.
        • Umesaki Y.
        • et al.
        Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis.
        J Am Coll Nutr. 2003; 22: 56-63
        • Furrie E.
        • Macfarlane S.
        • Kennedy A.
        • et al.
        Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial.
        Gut. 2005; 54: 242-249
        • Kato K.
        • Mizuno S.
        • Umesaki Y.
        • et al.
        Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis.
        Aliment Pharmacol Ther. 2004; 20: 1133-1141
        • Chapman T.M.
        • Plosker G.L.
        • Figgitt D.P.
        VSL#3 probiotic mixture: a review of its use in chronic inflammatory bowel diseases.
        Drugs. 2006; 66: 1371-1387
        • Sood A.
        • Midha V.
        • Makharia G.K.
        • et al.
        The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis.
        Clin Gastroenterol Hepatol. 2009; 7 (1209.e1): 1202-1209
        • Miele E.
        • Pascarella F.
        • Giannetti E.
        • et al.
        Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis.
        Am J Gastroenterol. 2009; 104: 437-443
        • Venturi A.
        • Gionchetti P.
        • Rizzello F.
        • et al.
        Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis.
        Aliment Pharmacol Ther. 1999; 13: 1103-1108
        • Bibiloni R.
        • Fedorak R.N.
        • Tannock G.W.
        • et al.
        VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis.
        Am J Gastroenterol. 2005; 100: 1539-1546
        • Huynh H.Q.
        • deBruyn J.
        • Guan L.
        • et al.
        Probiotic preparation VSL#3 induces remission in children with mild to moderate acute ulcerative colitis: a pilot study.
        Inflamm Bowel Dis. 2009; 15: 760-768
        • Wildt S.
        • Nordgaard I.
        • Hansen U.
        • et al.
        A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB–12 for maintenance of remission in ulcerative colitis.
        J Crohns Colitis. 2011; 5: 115-121
        • Mallon P.
        • McKay D.
        • Kirk S.
        • et al.
        Probiotics for induction of remission in ulcerative colitis.
        Cochrane Database Syst Rev. 2007; (CD005573)
        • Naidoo K.
        • Gordon M.
        • Fagbemi A.O.
        • et al.
        Probiotics for maintenance of remission in ulcerative colitis.
        Cochrane Database Syst Rev. 2011; (CD007443)
        • Malchow H.A.
        Crohn's disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn's disease?.
        J Clin Gastroenterol. 1997; 25: 653-658
        • Fedorak R.N.
        • Feagan B.G.
        • Hotte N.
        • et al.
        The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn's disease.
        Clin Gastroenterol Hepatol. 2015; 13 (928–835.e2)
        • Guslandi M.
        • Mezzi G.
        • Sorghi M.
        • et al.
        Saccharomyces boulardii in maintenance treatment of Crohn's disease.
        Dig Dis Sci. 2000; 45: 1462-1464
        • Gupta P.
        • Andrew H.
        • Kirschner B.S.
        • et al.
        Is lactobacillus GG helpful in children with Crohn's disease? Results of a preliminary, open-label study.
        J Pediatr Gastroenterol Nutr. 2000; 31: 453-457
        • Schultz M.
        • Timmer A.
        • Herfarth H.H.
        • et al.
        Lactobacillus GG in inducing and maintaining remission of Crohn's disease.
        BMC Gastroenterol. 2004; 4: 5
        • Prantera C.
        • Scribano M.L.
        • Falasco G.
        • et al.
        Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn's disease: a randomised controlled trial with Lactobacillus GG.
        Gut. 2002; 51: 405-409
        • Marteau P.
        • Lemann M.
        • Seksik P.
        • et al.
        Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn's disease: a randomised, double blind, placebo controlled GETAID trial.
        Gut. 2006; 55: 842-847
        • Lindsay J.O.
        • Whelan K.
        • Stagg A.J.
        • et al.
        Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn's disease.
        Gut. 2006; 55: 348-355
        • Benjamin J.L.
        • Hedin C.R.
        • Koutsoumpas A.
        • et al.
        Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease.
        Gut. 2011; 60: 923-929
        • Hafer A.
        • Kramer S.
        • Duncker S.
        • et al.
        Effect of oral lactulose on clinical and immunohistochemical parameters in patients with inflammatory bowel disease: a pilot study.
        BMC Gastroenterol. 2007; 7: 36
        • Casellas F.
        • Borruel N.
        • Torrejon A.
        • et al.
        Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin.
        Aliment Pharmacol Ther. 2007; 25: 1061-1067
        • Seidner D.L.
        • Lashner B.A.
        • Brzezinski A.
        • et al.
        An oral supplement enriched with fish oil, soluble fiber, and antioxidants for corticosteroid sparing in ulcerative colitis: a randomized, controlled trial.
        Clin Gastroenterol Hepatol. 2005; 3: 358-369
        • Laurell A.
        • Sjoberg K.
        Prebiotics and synbiotics in ulcerative colitis.
        Scand J Gastroenterol. 2017; 52: 477-485
        • Steed H.
        • Macfarlane G.T.
        • Blackett K.L.
        • et al.
        Clinical trial: the microbiological and immunological effects of synbiotic consumption - a randomized double-blind placebo-controlled study in active Crohn's disease.
        Aliment Pharmacol Ther. 2010; 32: 872-883
        • Chermesh I.
        • Tamir A.
        • Reshef R.
        • et al.
        Failure of Synbiotic 2000 to prevent postoperative recurrence of Crohn's disease.
        Dig Dis Sci. 2007; 52: 385-389
        • Fujimori S.
        • Gudis K.
        • Mitsui K.
        • et al.
        A randomized controlled trial on the efficacy of synbiotic vs probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis.
        Nutrition. 2009; 25: 520-525
        • Takaishi H.
        • Matsuki T.
        • Nakazawa A.
        • et al.
        Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease.
        Int J Med Microbiol. 2008; 298: 463-472
        • Sokol H.
        • Seksik P.
        The intestinal microbiota in inflammatory bowel diseases: time to connect with the host.
        Curr Opin Gastroenterol. 2010; 26: 327-331
        • Sokol H.
        • Seksik P.
        • Furet J.P.
        • et al.
        Low counts of Faecalibacterium prausnitzii in colitis microbiota.
        Inflamm Bowel Dis. 2009; 15: 1183-1189
        • Scheppach W.
        • Sommer H.
        • Kirchner T.
        • et al.
        Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis.
        Gastroenterology. 1992; 103: 51-56
        • Di Sabatino A.
        • Morera R.
        • Ciccocioppo R.
        • et al.
        Oral butyrate for mildly to moderately active Crohn's disease.
        Aliment Pharmacol Ther. 2005; 22: 789-794
        • Loubinoux J.
        • Bronowicki J.P.
        • Pereira I.A.
        • et al.
        Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases.
        FEMS Microbiol Ecol. 2002; 40: 107-112
        • Zinkevich V.V.
        • Beech I.B.
        Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa.
        FEMS Microbiol Ecol. 2000; 34: 147-155
        • Verma R.
        • Verma A.K.
        • Ahuja V.
        • et al.
        Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India.
        J Clin Microbiol. 2010; 48: 4279-4282
        • Mills D.J.
        • Tuohy K.M.
        • Booth J.
        • et al.
        Dietary glycated protein modulates the colonic microbiota toward a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects.
        J Appl Microbiol. 2008; 105: 706-714
        • Pitcher M.C.
        • Beatty E.R.
        • Cummings J.H.
        The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis.
        Gut. 2000; 46: 64-72
        • Moehle C.
        • Ackermann N.
        • Langmann T.
        • et al.
        Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease.
        J Mol Med (Berl). 2006; 84: 1055-1066
        • Sheng Y.H.
        • Hasnain S.Z.
        • Florin T.H.
        • et al.
        Mucins in inflammatory bowel diseases and colorectal cancer.
        J Gastroenterol Hepatol. 2012; 27: 28-38
        • Ijssennagger N.
        • Belzer C.
        • Hooiveld G.J.
        • et al.
        Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.
        Proc Natl Acad Sci U S A. 2015; 112: 10038-10043
        • Gough E.
        • Shaikh H.
        • Manges A.R.
        Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection.
        Clin Infect Dis. 2011; 53: 994-1002
        • Paramsothy S.
        • Kamm M.A.
        • Kaakoush N.O.
        • et al.
        Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial.
        Lancet. 2017; 389: 1218-1228
        • Moayyedi P.
        • Surette M.G.
        • Kim P.T.
        • et al.
        Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial.
        Gastroenterology. 2015; 149: 102-109.e6
        • Rossen N.G.
        • Fuentes S.
        • van der Spek M.J.
        • et al.
        Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis.
        Gastroenterology. 2015; 149: 110-118.e4
        • Suskind D.L.
        • Brittnacher M.J.
        • Wahbeh G.
        • et al.
        Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn's disease.
        Inflamm Bowel Dis. 2015; 21: 556-563
        • Cui B.
        • Feng Q.
        • Wang H.
        • et al.
        Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety, feasibility, and efficacy trial results.
        J Gastroenterol Hepatol. 2015; 30: 51-58
        • Hall A.B.
        • Tolonen A.C.
        • Xavier R.J.
        Human genetic variation and the gut microbiome in disease.
        Nat Rev Genet. 2017; 18: 690-699
        • Kostic A.D.
        • Xavier R.J.
        • Gevers D.
        The microbiome in inflammatory bowel disease: current status and the future ahead.
        Gastroenterology. 2014; 146: 1489-1499
        • Khor B.
        • Gardet A.
        • Xavier R.J.
        Genetics and pathogenesis of inflammatory bowel disease.
        Nature. 2011; 474: 307-317
        • Philpott D.J.
        • Sorbara M.T.
        • Robertson S.J.
        • et al.
        NOD proteins: regulators of inflammation in health and disease.
        Nat Rev Immunol. 2014; 14: 9-23
        • Knights D.
        • Silverberg M.S.
        • Weersma R.K.
        • et al.
        Complex host genetics influence the microbiome in inflammatory bowel disease.
        Genome Med. 2014; 6: 107
        • Chassaing B.
        • Rolhion N.
        • de Vallee A.
        • et al.
        Crohn disease--associated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae.
        J Clin Invest. 2011; 121: 966-975
        • Lapaquette P.
        • Bringer M.A.
        • Darfeuille-Michaud A.
        Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response.
        Cell Microbiol. 2012; 14: 791-807
        • Li D.
        • Achkar J.P.
        • Haritunians T.
        • et al.
        A pleiotropic missense variant in SLC39A8 Is associated with Crohn's disease and human gut microbiome composition.
        Gastroenterology. 2016; 151: 724-732
        • Iliev I.D.
        • Funari V.A.
        • Taylor K.D.
        • et al.
        Interactions between commensal fungi and the C-type lectin receptor Dectin–1 influence colitis.
        Science. 2012; 336: 1314-1317