Advertisement

Influence of Early Life, Diet, and the Environment on the Microbiome

  • Tien S. Dong
    Affiliations
    Vatche and Tamar Manoukin Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Arpana Gupta
    Correspondence
    Reprint requests Address requests for reprints to: Arpana Gupta, PhD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukin Division of Digestive Diseases, UCLA CHS 42-210, 10833 Le Conte Avenue, Los Angeles, California 90095-7378. fax: (310) 825-1919.
    Affiliations
    Vatche and Tamar Manoukin Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California

    G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
Published:September 06, 2018DOI:https://doi.org/10.1016/j.cgh.2018.08.067
      Advances in sequencing technology and bioinformatics have greatly enhanced our ability to understand the human microbiome. Over the last decade, a growing body of literature has linked nutrition and the environment to the microbiome and is now thought to be an important contributor to overall health. This paper reviews the literature from the past 10 years to highlight the influence of environmental factors such as diet, early life adversity and stress in shaping and modifying our microbiome towards health and disease. The review shows that many factors such as the mode of delivery, breast milk, stress, diet and medications can greatly influence the development of our gut microbiome and potentially make us more prone to certain diseases. By incorporating environmental factors into models that study the microbiome in the setting of health and disease, may provide a better understanding of disease and potentially new areas of treatment. To highlight this, we will additionally explore the role of the environment and the microbiome in the development of obesity and functional bowel disorders.

      Keywords

      Abbreviations used in this paper:

      C-section (cesarean section), IBS (irritable bowel syndrome), SCFA (short-chain fatty acid)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lax S.
        • Smith D.P.
        • Hampton-Marcell J.
        • et al.
        Longitudinal analysis of microbial interaction between humans and the indoor environment.
        Science. 2014; 345: 1048-1052
        • Rothschild D.
        • Weissbrod O.
        • Barkan E.
        • et al.
        Environment dominates over host genetics in shaping human gut microbiota.
        Nature. 2018; 555: 210-215
        • Ursell L.K.
        • Metcalf J.L.
        • Parfrey L.W.
        • et al.
        Defining the human microbiome.
        Nutr Rev. 2012; 70: S38-S44
        • Shreiner A.B.
        • Kao J.Y.
        • Young V.B.
        The gut microbiome in health and in disease.
        Curr Opin Gastroenterol. 2015; 31: 69-75
        • Gilbert J.A.
        • Blaser M.J.
        • Caporaso J.G.
        • et al.
        Current understanding of the human microbiome.
        Nat Med. 2018; 24: 392-400
        • Tamburini S.
        • Shen N.
        • Wu H.C.
        • et al.
        The microbiome in early life: implications for health outcomes.
        Nat Med. 2016; 22: 713-722
        • Jiménez E.
        • Marín M.L.
        • Martín R.
        • et al.
        Is meconium from healthy newborns actually sterile?.
        Res Microbiol. 2008; 159: 187-193
        • Satokari R.
        • Grönroos T.
        • Laitinen K.
        • et al.
        Bifidobacterium and Lactobacillus DNA in the human placenta.
        Lett Appl Microbiol. 2009; 48: 8-12
        • Morimoto S.
        • Usui H.
        • Kobayashi T.
        • et al.
        Bacterial culture-negative subclinical intra-amniotic infection can be detected by bacterial 16S ribosomal DNA-amplifying polymerase chain reaction.
        Jpn J Infect Dis. 2018; 71: 274-280
        • Tapiainen T.
        • Paalanne N.
        • Tejesvi M.V.
        • et al.
        Maternal influence on the fetal microbiome in a population-based study of the first-pass meconium.
        Pediatr Res. May 2018; ([Epub ahead of print])
        • Jiménez E.
        • Fernández L.
        • Marín M.L.
        • et al.
        Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section.
        Curr Microbiol. 2005; 51: 270-274
        • Kliman H.J.
        Comment on “the placenta harbors a unique microbiome.
        Sci Transl Med. 2014; 6: 254le4
        • Martin R.
        • Makino H.
        • Cetinyurek Yavuz A.
        • et al.
        Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota.
        PLoS One. 2016; 11: e0158498
        • Freitas A.C.
        • Chaban B.
        • Bocking A.
        • et al.
        The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of Mollicutes, compared to non-pregnant women.
        Sci Rep. 2017; 7: 9212
        • Romero R.
        • Dey S.K.
        • Fisher S.J.
        Preterm labor: one syndrome, many causes.
        Science. 2014; 345: 760-765
        • Koren O.
        • Goodrich J.K.
        • Cullender T.C.
        • et al.
        Host remodeling of the gut microbiome and metabolic changes during pregnancy.
        Cell. 2012; 150: 470-480
        • Mueller N.T.
        • Bakacs E.
        • Combellick J.
        • et al.
        The infant microbiome development: mom matters.
        Trends Mol Med. 2015; 21: 109-117
        • Dominguez-Bello M.G.
        • Costello E.K.
        • Contreras M.
        • et al.
        Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.
        Proc Natl Acad Sci U S A. 2010; 107: 11971-11975
        • Biasucci G.
        • Benenati B.
        • Morelli L.
        • et al.
        Cesarean delivery may affect the early biodiversity of intestinal bacteria.
        J Nutr. 2008; 138: 1796S-1800S
        • Salminen S.
        • Gibson G.R.
        • McCartney A.L.
        • et al.
        Influence of mode of delivery on gut microbiota composition in seven year old children.
        Gut. 2004; 53: 1388-1389
        • Neu J.
        • Rushing J.
        Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis.
        Clin Perinatol. 2011; 38: 321-331
        • Dominguez-Bello M.G.
        • De Jesus-Laboy K.M.
        • Shen N.
        • et al.
        Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer.
        Nat Med. 2016; 22: 250-253
        • Ferretti P.
        • Pasolli E.
        • Tett A.
        • et al.
        Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome.
        Cell Host Microbe. 2018; 24: 133-145
        • Navarro L.A.
        • French D.L.
        • Zauscher S.
        Synthesis of modular brush polymer-protein hybrids using diazotransfer and copper click chemistry.
        Bioconjug Chem. 2018; 29: 2594-2605
        • Ding T.
        • Schloss P.D.
        Dynamics and associations of microbial community types across the human body.
        Nature. 2014; 509: 357-360
        • Pannaraj P.S.
        • Li F.
        • Cerini C.
        • et al.
        Association between breast milk bacterial communities and establishment and development of the infant gut microbiome.
        JAMA Pediatr. 2017; 171: 647-654
        • Khodayar-Pardo P.
        • Mira-Pascual L.
        • Collado M.C.
        • et al.
        Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota.
        J Perinatol. 2014; 34: 599-605
        • Rudloff S.
        • Kunz C.
        Milk oligosaccharides and metabolism in infants.
        Adv Nutr. 2012; 3: 398S-405S
        • Coppa G.V.
        • Bruni S.
        • Morelli L.
        • et al.
        The first prebiotics in humans: human milk oligosaccharides.
        J Clin Gastroenterol. 2004; 38: S80-S83
        • Sudo N.
        • Sawamura S.
        • Tanaka K.
        • et al.
        The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction.
        J Immunol. 1997; 159: 1739-1745
        • Xiao L.
        • Van’t Land B.
        • Engen P.A.
        • et al.
        Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice.
        Sci Rep. 2018; 8: 3829
        • Hamilton M.K.
        • Ronveaux C.C.
        • Rust B.M.
        • et al.
        Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.
        Am J Physiol Gastrointest Liver Physiol. 2017; 312: G474-G487
        • Bokulich N.A.
        • Chung J.
        • Battaglia T.
        • et al.
        Antibiotics, birth mode, and diet shape microbiome maturation during early life.
        Sci Transl Med. 2016; 8: 343ra82
        • Bezirtzoglou E.
        • Tsiotsias A.
        • Welling G.W.
        Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH).
        Anaerobe. 2011; 17: 478-482
        • Gregory K.E.
        • Samuel B.S.
        • Houghteling P.
        • et al.
        Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants.
        Microbiome. 2016; 4: 68
        • Brugman S.
        • Visser J.T.J.
        • Hillebrands J.L.
        • et al.
        Prolonged exclusive breastfeeding reduces autoimmune diabetes incidence and increases regulatory T-cell frequency in bio-breeding diabetes-prone rats.
        Diabetes Metab Res Rev. 2009; 25: 380-387
        • Laursen M.F.
        • Bahl M.I.
        • Michaelsen K.F.
        • et al.
        First foods and gut microbes.
        Front Microbiol. 2017; 8: 356
        • Bergström A.
        • Skov T.H.
        • Bahl M.I.
        • et al.
        Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants.
        Appl Environ Microbiol. 2014; 80: 2889-2900
        • Fallani M.
        • Amarri S.
        • Uusijarvi A.
        • et al.
        Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres.
        Microbiology. 2011; 157: 1385-1392
        • Moussaoui N.
        • Jacobs J.P.
        • Larauche M.
        • et al.
        Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: influence of sex.
        J Neurogastroenterol Motil. 2017; 23: 135-143
        • Bailey M.T.
        • Coe C.L.
        Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys.
        Dev Psychobiol. 1999; 35: 146-155
        • Tannock G.W.
        • Savage D.C.
        Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract.
        Infect Immun. 1974; 9: 591-598
        • Labus J.S.
        • Hollister E.B.
        • Jacobs J.
        • et al.
        Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome.
        Microbiome. 2017; 5: 49
        • Hicks L.A.
        • Taylor T.H.
        • Hunkler R.J.
        U.S. outpatient antibiotic prescribing, 2010.
        N Engl J Med. 2013; 368: 1461-1462
        • Shao X.
        • Ding X.
        • Wang B.
        • et al.
        Antibiotic exposure in early life increases risk of childhood obesity: a systematic review and meta-analysis.
        Front Endocrinol (Lausanne). 2017; 8: 170
        • Miyoshi J.
        • Bobe A.M.
        • Miyoshi S.
        • et al.
        Peripartum antibiotics promote gut dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring.
        Cell Rep. 2017; 20: 491-504
        • Schulfer A.F.
        • Battaglia T.
        • Alvarez Y.
        • et al.
        Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice.
        Nat Microbiol. 2018; 3: 234-242
        • Turnbaugh P.J.
        • Ridaura V.K.
        • Faith J.J.
        • et al.
        The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.
        Sci Transl Med. 2009; 1 (6ra14)
        • Zinöcker M.K.
        • Lindseth I.A.
        The Western diet-microbiome-host interaction and its role in metabolic disease.
        Nutrients. 2018; 10: 365
        • Gupta V.K.
        • Paul S.
        • Dutta C.
        Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity.
        Front Microbiol. 2017; 8: 1162
        • Ley R.E.
        • Bäckhed F.
        • Turnbaugh P.
        • et al.
        Obesity alters gut microbial ecology.
        Proc Natl Acad Sci U S A. 2005; 102: 11070-11075
        • Singh R.K.
        • Chang H.-W.
        • Yan D.
        • et al.
        Influence of diet on the gut microbiome and implications for human health.
        J Transl Med. 2017; 15: 73
        • Rivera C.A.
        • Adegboyega P.
        • van Rooijen N.
        • et al.
        Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis.
        J Hepatol. 2007; 47: 571-579
        • Pendyala S.
        • Walker J.M.
        • Holt P.R.
        A high-fat diet is associated with endotoxemia that originates from the gut.
        Gastroenterology. 2012; 142: 1100-1101
        • Thaiss C.A.
        • Itav S.
        • Rothschild D.
        • et al.
        Persistent microbiome alterations modulate the rate of post-dieting weight regain.
        Nature. 2016; 540: 544-551
        • Willett W.C.
        • Sacks F.
        • Trichopoulou A.
        • et al.
        Mediterranean diet pyramid: a cultural model for healthy eating.
        Am J Clin Nutr. 1995; 61: 1402S-1406S
        • De Filippis F.
        • Pellegrini N.
        • Vannini L.
        • et al.
        High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome.
        Gut. 2016; 65: 1812-1821
        • Velasquez M.T.
        • Ramezani A.
        • Manal A.
        • et al.
        Trimethylamine N-oxide: the good, the bad and the unknown.
        Toxins (Basel). 2016; 8: 326
        • Koloverou E.
        • Panagiotakos D.B.
        • Pitsavos C.
        • et al.
        Adherence to Mediterranean diet and 10-year incidence (2002-2012) of diabetes: correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study.
        Diabetes Metab Res Rev. 2016; 32: 73-81
        • Clarke S.F.
        • Murphy E.F.
        • O’Sullivan O.
        • et al.
        Exercise and associated dietary extremes impact on gut microbial diversity.
        Gut. 2014; 63: 1913-1920
        • Cotillard A.
        • Kennedy S.P.
        • Kong L.C.
        • et al.
        Dietary intervention impact on gut microbial gene richness.
        Nature. 2013; 500: 585-588
        • Świątecka D.
        • Dominika Ś.
        • Narbad A.
        • et al.
        The study on the impact of glycated pea proteins on human intestinal bacteria.
        Int J Food Microbiol. 2011; 145: 267-272
        • Jantchou P.
        • Morois S.
        • Clavel-Chapelon F.
        • et al.
        Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study.
        Am J Gastroenterol. 2010; 105: 2195-2201
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Russell W.R.
        • Gratz S.W.
        • Duncan S.H.
        • et al.
        High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health.
        Am J Clin Nutr. 2011; 93: 1062-1072
        • Hughes R.
        • Magee E.A.
        • Bingham S.
        Protein degradation in the large intestine: relevance to colorectal cancer.
        Curr Issues Intest Microbiol. 2000; 1: 51-58
        • Llewellyn S.R.
        • Britton G.J.
        • Contijoch E.J.
        • et al.
        Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice.
        Gastroenterology. 2018; 154: 1037-1046
        • Kris-Etherton P.M.
        • Harris W.S.
        • Appel L.J.
        American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease.
        Circulation. 2002; 106: 2747-2757
        • Fava F.
        • Gitau R.
        • Griffin B.A.
        • et al.
        The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population.
        Int J Obes (Lond). 2013; 37: 216-223
        • Menni C.
        • Zierer J.
        • Pallister T.
        • et al.
        Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women.
        Sci Rep. 2017; 7: 11079
        • Caesar R.
        • Tremaroli V.
        • Kovatcheva-Datchary P.
        • et al.
        Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling.
        Cell Metab. 2015; 22: 658-668
        • Leone V.
        • Gibbons S.M.
        • Martinez K.
        • et al.
        Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
        Cell Host Microbe. 2015; 17: 681-689
        • Zarrinpar A.
        • Chaix A.
        • Yooseph S.
        • et al.
        Diet and feeding pattern affect the diurnal dynamics of the gut microbiome.
        Cell Metab. 2014; 20: 1006-1017
        • Thaiss C.A.
        • Levy M.
        • Korem T.
        • et al.
        Microbiota diurnal rhythmicity programs host transcriptome oscillations.
        Cell. 2016; 167: 1495-1510
        • National Center for Health Statistics
        NCHS fact sheet | March 2017 NCHS nutrition data.
        (Available at:) (Accessed May 5, 2018)
        • Makki K.
        • Deehan E.C.
        • Walter J.
        • et al.
        The impact of dietary fiber on gut microbiota in host health and disease.
        Cell Host Microbe. 2018; 23: 705-715
        • Murphy N.
        • Norat T.
        • Ferrari P.
        • et al.
        Dietary fibre intake and risks of cancers of the colon and rectum in the European Prospective Investigation into Cancer and Nutrition (EPIC).
        PLoS One. 2012; 7: e39361
        • Bodinham C.L.
        • Smith L.
        • Wright J.
        • et al.
        Dietary fibre improves first-phase insulin secretion in overweight individuals.
        PLoS One. 2012; 7: e40834
        • Conlon M.A.
        • Bird A.R.
        The impact of diet and lifestyle on gut microbiota and human health.
        Nutrients. 2014; 7: 17-44
        • Fung K.Y.C.
        • Cosgrove L.
        • Lockett T.
        • et al.
        A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate.
        Br J Nutr. 2012; 108: 820-831
        • Zou J.
        • Chassaing B.
        • Singh V.
        • et al.
        Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health.
        Cell Host Microbe. 2018; 23: 41-53
        • Sonnenburg E.D.
        • Sonnenburg J.L.
        Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates.
        Cell Metab. 2014; 20: 779-786
        • Dethlefsen L.
        • Relman D.A.
        Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation.
        Proc Natl Acad Sci U S A. 2011; 108: 4554-4561
        • Francino M.P.
        Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances.
        Front Microbiol. 2015; 6: 1543
        • Jakobsson H.E.
        • Jernberg C.
        • Andersson A.F.
        • et al.
        Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome.
        PLoS One. 2010; 5: e9836
        • Löfmark S.
        • Jernberg C.
        • Jansson J.K.
        • et al.
        Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes.
        J Antimicrob Chemother. 2006; 58: 1160-1167
        • Theriot C.M.
        • Koenigsknecht M.J.
        • Carlson P.E.
        • et al.
        Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection.
        Nat Commun. 2014; 5: 3114
        • Gianotti R.J.
        • Moss A.C.
        Fecal microbiota transplantation: from Clostridium difficile to inflammatory bowel disease.
        Gastroenterol Hepatol (N Y). 2017; 13: 209-213
        • van Nood E.
        • Vrieze A.
        • Nieuwdorp M.
        • et al.
        Duodenal infusion of donor feces for recurrent Clostridium difficile.
        N Engl J Med. 2013; 368: 407-415
        • Rotman S.R.
        • Bishop T.F.
        Proton pump inhibitor use in the U.S. ambulatory setting, 2002-2009.
        PLoS One. 2013; 8: e56060
      1. Medical Expenditure Panel Survey. Content last reviewed April 2018. Agency for Healthcare Research and Quality, Rockville, MD. Available at: http://www.ahrq.gov/research/data/meps/index.html. Accessed May 5, 2018.

        • Lombardo L.
        • Foti M.
        • Ruggia O.
        • et al.
        Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy.
        Clin Gastroenterol Hepatol. 2010; 8: 504-508
        • Wu H.
        • Esteve E.
        • Tremaroli V.
        • et al.
        Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.
        Nat Med. 2017; 23: 850-858
        • Maier L.
        • Pruteanu M.
        • Kuhn M.
        • et al.
        Extensive impact of non-antibiotic drugs on human gut bacteria.
        Nature. 2018; 555: 623-628
        • Song S.J.
        • Lauber C.
        • Costello E.K.
        • et al.
        Cohabiting family members share microbiota with one another and with their dogs.
        Elife. 2013; 2: e00458
        • Fujimura K.E.
        • Slusher N.A.
        • Cabana M.D.
        • et al.
        Role of the gut microbiota in defining human health.
        Expert Rev Anti Infect Ther. 2010; 8: 435-454
        • Pelucchi C.
        • Galeone C.
        • Bach J.-F.
        • et al.
        Pet exposure and risk of atopic dermatitis at the pediatric age: a meta-analysis of birth cohort studies.
        J Allergy Clin Immunol. 2013; 132: 616-622
        • Wegienka G.
        • Zoratti E.
        • Johnson C.C.
        The role of the early-life environment in the development of allergic disease.
        Immunol Allergy Clin North Am. 2015; 35: 1-17
        • Debarry J.
        • Garn H.
        • Hanuszkiewicz A.
        • et al.
        Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties.
        J Allergy Clin Immunol. 2007; 119: 1514-1521
        • Azad M.B.
        • Konya T.
        • Maughan H.
        • et al.
        Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity.
        Allergy Asthma Clin Immunol. 2013; 9: 15
        • Vogtmann E.
        • Flores R.
        • Yu G.
        • et al.
        Association between tobacco use and the upper gastrointestinal microbiome among Chinese men.
        Cancer Causes Control. 2015; 26: 581-588
        • Wang H.
        • Zhao J.-X.
        • Hu N.
        • et al.
        Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins.
        World J Gastroenterol. 2012; 18: 2180-2187
        • Biedermann L.
        • Zeitz J.
        • Mwinyi J.
        • et al.
        Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans.
        PLoS One. 2013; 8: e59260
        • Biedermann L.
        • Brülisauer K.
        • Zeitz J.
        • et al.
        Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.
        Inflamm Bowel Dis. 2014; 20: 1496-1501
        • Benjamin J.L.
        • Hedin C.R.H.
        • Koutsoumpas A.
        • et al.
        Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota.
        Inflamm Bowel Dis. 2012; 18: 1092-1100
        • Lucke K.
        • Miehlke S.
        • Jacobs E.
        • et al.
        Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis.
        J Med Microbiol. 2006; 55: 617-624
        • Allais L.
        • Kerckhof F.-M.
        • Verschuere S.
        • et al.
        Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut.
        Environ Microbiol. 2016; 18: 1352-1363
        • Tillisch K.
        • Labus J.S.
        Neuroimaging the microbiome-gut-brain axis.
        Adv Exp Med Biol. 2014; 817: 405-416
        • Mohajeri M.H.
        • La Fata G.
        • Steinert R.E.
        • et al.
        Relationship between the gut microbiome and brain function.
        Nutr Rev. 2018; 76: 481-496
        • Tetel M.J.
        • de Vries G.J.
        • Melcangi R.C.
        • et al.
        Steroids, stress and the gut microbiome-brain axis.
        J Neuroendocrinol. 2018; 30: e12548
        • Foster J.A.
        • Rinaman L.
        • Cryan J.F.
        Stress & the gut-brain axis: regulation by the microbiome.
        Neurobiol Stress. 2017; 7: 124-136
        • Mayer E.A.
        • Hsiao E.Y.
        The gut and its microbiome as related to central nervous system functioning and psychological well-being: introduction to the special issue of psychosomatic medicine.
        Psychosom Med. 2017; 79: 844-846
        • Liu H.-N.
        • Wu H.
        • Chen Y.-Z.
        • et al.
        Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: a systematic review and meta-analysis.
        Dig Liver Dis. 2017; 49: 331-337
        • Rea K.
        • Dinan T.G.
        • Cryan J.F.
        The microbiome: a key regulator of stress and neuroinflammation.
        Neurobiol Stress. 2016; 4: 23-33
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • et al.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Maruvada P.
        • Leone V.
        • Kaplan L.M.
        • et al.
        The human microbiome and obesity: moving beyond associations.
        Cell Host Microbe. 2017; 22: 589-599
        • Tremaroli V.
        • Karlsson F.
        • Werling M.
        • et al.
        Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation.
        Cell Metab. 2015; 22: 228-238
        • Liou A.P.
        • Paziuk M.
        • Luevano J.-M.
        • et al.
        Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity.
        Sci Transl Med. 2013; 5: 178ra41
        • Parekh P.J.
        • Balart L.A.
        • Johnson D.A.
        The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease.
        Clin Transl Gastroenterol. 2015; 6: e91
        • Ford A.C.
        • Lacy B.E.
        • Talley N.J.
        Irritable bowel syndrome.
        N Engl J Med. 2017; 376: 2566-2578
        • O’Mahony S.M.
        • Marchesi J.R.
        • Scully P.
        • et al.
        Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses.
        Biol Psychiatry. 2009; 65: 263-267
        • Stern E.K.
        • Brenner D.M.
        Gut microbiota-based therapies for irritable bowel syndrome.
        Clin Transl Gastroenterol. 2018; 9: e134
        • Heard E.
        • Martienssen R.A.
        Transgenerational epigenetic inheritance: myths and mechanisms.
        Cell. 2014; 157: 95-109
        • Ranjan R.
        • Rani A.
        • Metwally A.
        • et al.
        Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing.
        Biochem Biophys Res Commun. 2016; 469: 967-977
        • de Muinck E.J.
        • Trosvik P.
        • Gilfillan G.D.
        • et al.
        A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.
        Microbiome. 2017; 5: 68