Advertisement

Emerging Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease: From Composition to Function

Published:September 06, 2018DOI:https://doi.org/10.1016/j.cgh.2018.08.065
      The gut microbiome, a diverse microbial community in the gastrointestinal tract, plays a pivotal role in the maintenance of health. The gut microbiome metabolizes dietary and host-derived molecules to produce bioactive metabolites, which have a wide array of effects on host metabolism and immunity. ‘Dysbiosis’ of the gut microbiome, commonly considered as perturbation of microbiome diversity and composition, has been associated with intestinal and extra-intestinal diseases, including nonalcoholic fatty liver disease (NAFLD). A number of endogenous and exogenous factors, such as nutritional intake and xenobiotic exposure, can alter the gut microbiome. We will review the evolving methods for studying the gut microbiome and how these profiling techniques have been utilized to further our understanding of the gut microbial community composition and functional potential in the clinical spectrum of NAFLD. We will highlight microbiome-host interactions that may contribute to the pathogenesis of NAFLD, with a primary focus on mechanisms related to the metabolic output of the gut microbiome. Finally, we will discuss potential therapeutic implications of the gut microbiome in NAFLD.

      Keywords

      Abbreviations used in this paper:

      AAA (aromatic amino acids), BCAA (branched-chain amino acids), FMT (fecal microbiota transplantation), FXR (farnesoid X receptor), HCC (hepatocellular carcinoma), MTT (microbiome-targeted therapy), NAFL (nonalcoholic fatty liver), NAFLD (nonalcoholic fatty liver disease), NASH (nonalcoholic steatohepatitis), rRNA (ribosomal ribonucleic acid), SCFA (short-chain fatty acid), TLR4 (toll-like receptor 4)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lynch S.V.
        • Pedersen O.
        The human intestinal microbiome in health and disease.
        N Engl J Med. 2016; 375: 2369-2379
        • Schnabl B.
        • Brenner D.A.
        Interactions between the intestinal microbiome and liver diseases.
        Gastroenterology. 2014; 146: 1513-1524
        • Yu L.X.
        • Schwabe R.F.
        The gut microbiome and liver cancer: mechanisms and clinical translation.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 527-539
        • García-Lezana T.
        • Raurell I.
        • Bravo M.
        • et al.
        Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis.
        Hepatology. 2018; 67: 1485-1498
        • Gilbert J.A.
        • Blaser M.J.
        • Caporaso J.G.
        • et al.
        Current understanding of the human microbiome.
        Nat Med. 2018; 24: 392-400
        • Knight R.
        • Vrbanac A.
        • Taylor B.C.
        • et al.
        Best practices for analysing microbiomes.
        Nat Rev Microbiol. 2018; 16: 410-422
        • Zhu L.
        • Baker S.S.
        • Gill C.
        • et al.
        Characterization of gut microbiomes in nonalcoholic steatohepatitis patients: a connection between endogenous alcohol and NASH.
        Hepatology. 2013; 57: 601-609
        • Michail S.
        • Lin M.
        • Frey M.R.
        • et al.
        Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease.
        FEMS microbiology ecology. 2015; 91: 1-9
        • Del Chierico F.
        • Nobili V.
        • Vernocchi P.
        • et al.
        Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach.
        Hepatology. 2017; 65: 451-464
        • Nobili V.
        • Putignani L.
        • Mosca A.
        • et al.
        Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players?.
        Arch Med Sci. 2018; 14: 81-87
        • Raman M.
        • Ahmed I.
        • Gillevet P.M.
        • et al.
        Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease.
        Clin Gastroenterol Hepatol. 2013; 11: 868-875
        • Wong V.W.-S.
        • Tse C.-H.
        • Lam T.T.-Y.
        • et al.
        Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis: a longitudinal study.
        PloS One. 2013; 8: e62885
        • Mouzaki M.
        • Wang A.Y.
        • Bandsma R.
        • et al.
        Bile acids and dysbiosis in non-alcoholic fatty liver disease.
        PloS One. 2016; 11: e0151829
        • Boursier J.
        • Mueller O.
        • Barret M.
        • et al.
        The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota.
        Hepatology. 2016; 63: 764-775
        • Wang B.
        • Jiang X.
        • Cao M.
        • et al.
        Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease.
        Sci Rep. 2016; 6: 32002
        • Shen F.
        • Zheng R.D.
        • Sun X.Q.
        • et al.
        Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease.
        Hepatobiliary Pancreat Dis Int. 2017; 16: 375-381
        • Loomba R.
        • Seguritan V.
        • Li W.
        • et al.
        Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease.
        Cell Metab. 2017; 25: 1054-1062
        • Da Silva H.E.
        • Teterina A.
        • Comelli E.M.
        • et al.
        Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance.
        Sci Rep. 2018; 8: 1466
        • Duarte S.M.B.
        • Stefano J.T.
        • Miele L.
        • et al.
        Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: a prospective pilot study.
        Nutr Metab Cardiovasc Dis. 2018; 28: 369-384
        • Ponziani F.R.
        • Bhoori S.
        • Castelli C.
        • et al.
        Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in non-alcoholic fatty liver disease.
        Hepatology. 2018; ([Epub ahead of print])
        • Hoyles L.
        • Fernandez-Real J.M.
        • Federici M.
        • et al.
        Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women.
        Nat Med. 2018; 24: 1070-1080
        • Caussy C.
        • Hsu C.
        • Lo M.-T.
        • et al.
        Novel link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD.
        Hepatology. 2018; ([Epub ahead of print])
        • Jiang W.
        • Wu N.
        • Wang X.
        • et al.
        Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease.
        Sci Rep. 2015; 5: 8096
        • Million M.
        • Maraninchi M.
        • Henry M.
        • et al.
        Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii.
        Int J Obes. 2012; 36: 817-825
        • Ottosson F.
        • Brunkwall L.
        • Ericson U.
        • et al.
        Connection between BMI-related plasma metabolite profile and gut microbiota.
        J Clin Endocrinol Metab. 2018; 103: 1491-1501
        • Schneeberger M.
        • Everard A.
        • Gomez-Valades A.G.
        • et al.
        Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice.
        Sci Rep. 2015; 5: 16643
        • Plovier H.
        • Everard A.
        • Druart C.
        • et al.
        A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice.
        Nat Med. 2017; 23: 107-113
        • Pedersen H.K.
        • Gudmundsdottir V.
        • Nielsen H.B.
        • et al.
        Human gut microbes impact host serum metabolome and insulin sensitivity.
        Nature. 2016; 535: 376-381
        • Grat M.
        • Wronka K.M.
        • Krasnodebski M.
        • et al.
        Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis.
        Transplant Proc. 2016; 48: 1687-1691
        • Li J.
        • Jia H.
        • Cai X.
        • et al.
        An integrated catalog of reference genes in the human gut microbiome.
        Nat Biotechnol. 2014; 32: 834-841
        • Maier L.
        • Pruteanu M.
        • Kuhn M.
        • et al.
        Extensive impact of non-antibiotic drugs on human gut bacteria.
        Nature. 2018; 555: 623-628
        • Jackson M.A.
        • Goodrich J.K.
        • Maxan M.-E.
        • et al.
        Proton pump inhibitors alter the composition of the gut microbiota.
        Gut. 2016; 65: 749-756
        • Forslund K.
        • Hildebrand F.
        • Nielsen T.
        • et al.
        Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.
        Nature. 2015; 528: 262-266
        • Nash A.K.
        • Auchtung T.A.
        • Wong M.C.
        • et al.
        The gut mycobiome of the Human Microbiome Project healthy cohort.
        Microbiome. 2017; 5: 153
        • Mar Rodríguez M.
        • Pérez D.
        • Javier Chaves F.
        • et al.
        Obesity changes the human gut mycobiome.
        Sci Rep. 2015; 5: 14600
        • Finucane M.M.
        • Sharpton T.J.
        • Laurent T.J.
        • et al.
        A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter.
        PloS One. 2014; 9: e84689
        • Abu-Ali G.S.
        • Mehta R.S.
        • Lloyd-Price J.
        • et al.
        Metatranscriptome of human faecal microbial communities in a cohort of adult men.
        Nat Microbiol. 2018; 3: 356-366
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; 500: 541-546
        • Del Chierico F.
        • Nobili V.
        • Vernocchi P.
        • et al.
        Gut microbiota profiling of pediatric NAFLD and obese patients unveiled by an integrated meta-omics based approach.
        Hepatology. 2017; 65: 451-464
        • Pendyala S.
        • Walker J.M.
        • Holt P.R.
        A high-fat diet is associated with endotoxemia that originates from the gut.
        Gastroenterology. 2012; 142: 1100-1101
        • Miele L.
        • Valenza V.
        • La Torre G.
        • et al.
        Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease.
        Hepatology. 2009; 49: 1877-1887
        • Rahman K.
        • Desai C.
        • Iyer S.S.
        • et al.
        Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol.
        Gastroenterology. 2016; 151: 733-746
        • Bergheim I.
        • Weber S.
        • Vos M.
        • et al.
        Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.
        J Hepatol. 2008; 48: 983-992
        • Hartmann P.
        • Seebauer C.T.
        • Mazagova M.
        • et al.
        Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity.
        Am J Physiol Gastrointest Liver Physiol. 2016; 310: G310-G322
        • Luck H.
        • Tsai S.
        • Chung J.
        • et al.
        Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.
        Cell Metab. 2015; 21: 527-542
        • Henao-Mejia J.
        • Elinav E.
        • Jin C.
        • et al.
        Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.
        Nature. 2012; 482: 179-185
        • Diehl A.M.
        • Harrison S.
        • Caldwell S.
        • et al.
        JKB-121 in patients with nonalcoholic steatohepatitis: a phase 2 double blind randomized placebo control study.
        J Hepatol. 2018; 68: S103
        • Blumberg H.
        • McCollum E.V.
        The prevention by choline of liver cirrhosis in rats on high fat, low protein diets.
        Science. 1941; 93: 598-599
        • Corbin K.D.
        • Zeisel S.H.
        Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression.
        Curr Opin Gastroenterol. 2012; 28: 159-165
        • Stremmel W.
        • Schmidt K.V.
        • Schuhmann V.
        • et al.
        Blood trimethylamine-N-oxide originates from microbiota mediated breakdown of phosphatidylcholine and absorption from small intestine.
        PloS One. 2017; 12: e0170742
        • Romano K.A.
        • Vivas E.I.
        • Amador-Noguez D.
        • et al.
        Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.
        mBio. 2015; 6: e02481
        • Rath S.
        • Heidrich B.
        • Pieper D.H.
        • et al.
        Uncovering the trimethylamine-producing bacteria of the human gut microbiota.
        Microbiome. 2017; 5: 54
        • Dumas M.-E.
        • Barton R.H.
        • Toye A.
        • et al.
        Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice.
        Proc Natl Acad Sci U S A. 2006; 103: 12511-12516
        • Spencer M.D.
        • Hamp T.J.
        • Reid R.W.
        • et al.
        Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency.
        Gastroenterology. 2011; 140: 976-986
        • Tang W.H.W.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Martinez K.B.
        • Leone V.
        • Chang E.B.
        Microbial metabolites in health and disease: Navigating the unknown in search of function.
        J Biol Chem. 2017; 292: 8553-8559
        • Canfora E.E.
        • Jocken J.W.
        • Blaak E.E.
        Short-chain fatty acids in control of body weight and insulin sensitivity.
        Nat Rev Endocrinol. 2015; 11: 577-591
        • Ríos-Covián D.
        • Ruas-Madiedo P.
        • Margolles A.
        • et al.
        Intestinal short chain fatty acids and their link with diet and human health.
        Front Microbiol. 2016; 7: 185
        • Schwiertz A.
        • Taras D.
        • Schäfer K.
        • et al.
        Microbiota and SCFA in lean and overweight healthy subjects.
        Obesity. 2010; 18: 190-195
        • Patil D.P.
        • Dhotre D.P.
        • Chavan S.G.
        • et al.
        Molecular analysis of gut microbiota in obesity among Indian individuals.
        J Biosci. 2012; 37: 647-657
        • Salazar N.
        • Dewulf E.M.
        • Neyrinck A.M.
        • et al.
        Insulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women.
        Clin Nutr. 2015; 34: 501-507
        • Chambers E.S.
        • Viardot A.
        • Psichas A.
        • et al.
        Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults.
        Gut. 2015; 64: 1744-1754
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012; 143: 913-916
        • Mattace Raso G.
        • Simeoli R.
        • Russo R.
        • et al.
        Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet.
        PloS One. 2013; 8: e68626
        • Slijepcevic D.
        • van de Graaf S.F.J.
        Bile acid uptake transporters as targets for therapy.
        Dig Dis. 2017; 35: 251-258
        • Ridlon J.M.
        • Harris S.C.
        • Bhowmik S.
        • et al.
        Consequences of bile salt biotransformations by intestinal bacteria.
        Gut Microbes. 2016; 7: 22-39
        • Urdaneta V.
        • Casadesus J.
        Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts.
        Front Med. 2017; 4: 163
        • Jiang C.
        • Xie C.
        • Li F.
        • et al.
        Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease.
        J Clin Invest. 2015; 125: 386-402
        • Jia W.
        • Xie G.
        • Jia W.
        Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 111-128
        • Wahlström A.
        • Kovatcheva-Datchary P.
        • Ståhlman M.
        • et al.
        Crosstalk between bile acids and gut microbiota and its impact on farnesoid X receptor signalling.
        Dig Dis. 2017; 35: 246-250
        • Neuschwander-Tetri B.A.
        • Loomba R.
        • Sanyal A.J.
        • et al.
        Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial.
        Lancet. 2015; 385: 956-965
        • Ferslew B.C.
        • Xie G.
        • Johnston C.K.
        • et al.
        Altered bile acid metabolome in patients with nonalcoholic steatohepatitis.
        Dig Dis Sci. 2015; 60: 3318-3328
        • Jiao N.
        • Baker S.S.
        • Chapa-Rodriguez A.
        • et al.
        Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.
        Gut. 2017; 67: 1881-1891
        • Baker S.S.
        • Baker R.D.
        • Liu W.
        • et al.
        Role of alcohol metabolism in non-alcoholic steatohepatitis.
        PloS One. 2010; 5: e9570
        • Elshaghabee F.M.F.
        • Bockelmann W.
        • Meske D.
        • et al.
        Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions.
        Front Microbiol. 2016; 7: 47
        • Engstler A.J.
        • Aumiller T.
        • Degen C.
        • et al.
        Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease.
        Gut. 2016; 65: 1564-1571
        • Wang T.J.
        • Larson M.G.
        • Vasan R.S.
        • et al.
        Metabolite profiles and the risk of developing diabetes.
        Nat Med. 2011; 17: 448-453
        • Menni C.
        • Fauman E.
        • Erte I.
        • et al.
        Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach.
        Diabetes. 2013; 62: 4270-4276
        • Lavekar A.
        • Raje D.
        • Manohar T.
        • et al.
        Role of probiotics in the treatment of nonalcoholic fatty liver disease: a meta-analysis.
        Eur J Hepatogastroenterol. 2017; 7: 130-137
      1. Clinicaltrials.gov, Identifier: NCT02721264.

      2. Clinicaltrials.gov, Identifier: NCT02469272.

        • Kootte R.S.
        • Levin E.
        • Salojärvi J.
        • et al.
        Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition.
        Cell Metab. 2017; 26: 611-619