Advertisement

Biologic Therapies and Risk of Infection and Malignancy in Patients With Inflammatory Bowel Disease: A Systematic Review and Network Meta-analysis

      Background & Aims

      Safety issues are a major concern for patients considering treatments for inflammatory bowel disease (IBD). We performed a systematic review and meta-analysis to determine whether biologic agents affect the risk of infection or malignancy in adults with IBD.

      Methods

      We searched PubMed, Embase, Scopus, Cochrane IBD Group Specialized Trials Register, World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov through March 2016 for randomized placebo-controlled or head-to-head trials of biologic agents approved for treatment of adults with IBD (ie, adalimumab, certolizumab, golimumab, infliximab, natalizumab, or vedolizumab). Two reviewers independently extracted study data and outcomes (serious infections, opportunistic infections, tuberculosis, any infection, and malignancies) and rated each trial’s risk of bias. We used conventional meta-analysis to synthesize direct evidence and a network meta-analysis for adjusted indirect treatment comparisons.

      Results

      We identified 49 randomized placebo-controlled studies comprising 14,590 participants. Synthesis of the evidence indicated that patients treated with biologics had a moderate increase in risk of any infection (odds ratio [OR], 1.19; 95% confidence interval [CI], 1.10–1.29) and a significant increase in risk of opportunistic infections (OR, 1.90; 95% CI, 1.21–3.01). Risk of serious infections was not increased in patients treated with biologics (OR, 0.89; 95% CI, 0.71–1.12). On the contrary, biologics appeared to significantly reduce risk of serious infections in studies with low risk of bias (OR, 0.56; 95% CI, 0.35–0.90). We did not find an increased risk of malignancy with use of biologic agents (OR, 0.90; 95% CI, 0.54–1.50), but data were insufficient in terms of exposure and follow-up times. None of the indirect comparisons, either among the individual agents or between the anti–tumor necrosis factor and anti-integrin classes, reached significance for any of the outcomes analyzed.

      Conclusions

      On the basis of a systematic review and meta-analysis, biologic agents increase the risk of opportunistic infections in patients with IBD, but not the risk of serious infections. It is necessary to continue to monitor the comparative and long-term safety profiles of these drugs.

      Keywords

      Abbreviations used in this paper:

      AE (adverse event), anti-TNF (anti–tumor necrosis factor), CD (Crohn’s disease), CI (confidence interval), IBD (inflammatory bowel disease), NNH (number needed to harm), OR (odds ratio), PRISMA (preferred reporting items for systematic reviews and meta-analyses), PROSPERO (international prospective register of systematic reviews), RCT (randomized controlled trial), RoB (risk of bias), TB (tuberculosis), UC (ulcerative colitis)
      To read this article in full you will need to make a payment
      AGA Member Login
      Login with your AGA username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Danese S.
        • Vuitton L.
        • Peyrin-Biroulet L.
        Biologic agents for IBD: practical insights.
        Nat Rev Gastroenterol Hepatol. 2015; 12: 537-545
        • Danese S.
        • Fiorino G.
        • Peyrin-Biroulet L.
        • et al.
        Biological agents for moderately to severely active ulcerative colitis: a systematic review and network meta-analysis.
        Ann Intern Med. 2014; 160: 704-711
        • Hazlewood G.S.
        • Rezaie A.
        • Borman M.
        • et al.
        Comparative effectiveness of immunosuppressants and biologics for inducing and maintaining remission in Crohn’s disease: a network meta-analysis.
        Gastroenterology. 2015; 148: 344-354.e5
        • Singh S.
        • Garg S.K.
        • Pardi D.S.
        • et al.
        Comparative efficacy of biologic therapy in biologic-naïve patients with Crohn disease: a systematic review and network meta-analysis.
        Mayo Clin Proc. 2014; 89: 1621-1635
        • Nyboe Andersen N.
        • Pasternak B.
        • Friis-Møller N.
        • et al.
        Association between tumour necrosis factor-α inhibitors and risk of serious infections in people with inflammatory bowel disease: nationwide Danish cohort study.
        BMJ. 2015; 350: h2809
        • Deepak P.
        • Stobaugh D.J.
        • Ehrenpreis E.D.
        Infectious complications of TNF-α inhibitor monotherapy versus combination therapy with immunomodulators in inflammatory bowel disease: analysis of the Food and Drug Administration Adverse Event Reporting System.
        J Gastrointest Liver Dis. 2013; 22: 269-276
        • Grijalva C.G.
        • Chen L.
        • Delzell E.
        • et al.
        Initiation of tumor necrosis factor-α antagonists and the risk of hospitalization for infection in patients with autoimmune diseases.
        JAMA. 2011; 306: 2331-2339
        • Cipriani A.
        • Higgins J.P.
        • Geddes J.R.
        • et al.
        Conceptual and technical challenges in network meta-analysis.
        Ann Intern Med. 2013; 159: 130-137
        • Mills E.J.
        • Thorlund K.
        • Ioannidis J.P.
        Demystifying trial networks and network meta-analysis.
        BMJ. 2013; 346: f2914
        • Caldwell D.M.
        • Ades A.E.
        • Higgins J.P.
        Simultaneous comparison of multiple treatments: combining direct and indirect evidence.
        BMJ. 2005; 331: 897-900
      1. Bonovas S, Fiorino G, Allocca M, et al. Biologic therapies in inflammatory bowel disease and the risk of infections and malignancies: a systematic review and meta-analysis of harmful effects in randomized controlled trials. PROSPERO 2015:CRD42015027065. Available at: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015027065. Accessed June 30, 2016.

      2. Higgins JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration, 2011, version 5.0.1.

        • Jansen J.P.
        • Fleurence R.
        • Devine B.
        • et al.
        Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices—part 1.
        Value Health. 2011; 14: 417-428
        • Hoaglin D.C.
        • Hawkins N.
        • Jansen J.P.
        • et al.
        Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2.
        Value Health. 2011; 14: 429-437
        • Hutton B.
        • Salanti G.
        • Caldwell D.M.
        • et al.
        The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.
        Ann Intern Med. 2015; 162: 777-784
        • Higgins J.P.
        • Altman D.G.
        • Gøtzsche P.C.
        • et al.
        The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Bonovas S.
        • Lytras T.
        • Nikolopoulos G.
        On the criteria used for assessing the risk of bias in randomized trials included in systematic reviews and meta-analyses addressing adverse effects.
        Eur J Epidemiol. 2015; 30: 249-250
        • Sweeting M.J.
        • Sutton A.J.
        • Lambert P.C.
        What to add to nothing? use and avoidance of continuity corrections in meta-analysis of sparse data.
        Stat Med. 2004; 23: 1351-1375
        • Mantel N.
        • Haenszel W.
        Statistical aspects of the analysis of data from retrospective studies of disease.
        J Natl Cancer Inst. 1959; 22: 719-748
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188
        • Begg C.B.
        • Mazumdar M.
        Operating characteristics of a rank correlation test for publication bias.
        Biometrics. 1994; 50: 1088-1101
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • et al.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Cochran W.
        The combination of estimates from different experiments.
        Biometrics. 1954; 810: 101-129
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • et al.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560
        • Higgins J.P.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558
        • Bucher H.C.
        • Guyatt G.H.
        • Griffith L.E.
        • et al.
        The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials.
        J Clin Epidemiol. 1997; 50: 683-691
        • Heneghan C.
        • Badenoch D.
        Evidence-based medicine toolkit.
        BMJ Books, Blackwell Publishing, Oxford, UK2006
        • R Development Core Team
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2014
        • Schwarzer G.
        meta: an R package for meta-analysis.
        R News. 2007; 7: 40-45
        • Wells G.A.
        • Sultan S.A.
        • Chen L.
        • et al.
        Indirect treatment comparison [computer program]. Version 1.0.
        Canadian Agency for Drugs and Technologies in Health, Ottawa2009
        • Rutgeerts P.
        • Feagan B.G.
        • Marano C.W.
        • et al.
        Randomised clinical trial: a placebo-controlled study of intravenous golimumab induction therapy for ulcerative colitis.
        Aliment Pharmacol Ther. 2015; 42: 504-514
        • Sands B.E.
        • Feagan B.G.
        • Rutgeerts P.
        • et al.
        Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed.
        Gastroenterology. 2014; 147: 618-627.e3
        • Panaccione R.
        • Ghosh S.
        • Middleton S.
        • et al.
        Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis.
        Gastroenterology. 2014; 146: 392-400.e3
        • Suzuki Y.
        • Motoya S.
        • Hanai H.
        • et al.
        Efficacy and safety of adalimumab in Japanese patients with moderately to severely active ulcerative colitis.
        J Gastroenterol. 2014; 49: 283-294
        • Sandborn W.J.
        • Feagan B.G.
        • Marano C.
        • et al.
        Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis.
        Gastroenterology. 2014; 146: 96-109.e1
        • Sandborn W.J.
        • Feagan B.G.
        • Marano C.
        • et al.
        Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis.
        Gastroenterology. 2014; 146: 85-95
        • Sandborn W.J.
        • Feagan B.G.
        • Rutgeerts P.
        • et al.
        Vedolizumab as induction and maintenance therapy for Crohn’s disease.
        N Engl J Med. 2013; 369: 711-721
        • Feagan B.G.
        • Rutgeerts P.
        • Sands B.E.
        • et al.
        Vedolizumab as induction and maintenance therapy for ulcerative colitis.
        N Engl J Med. 2013; 369: 699-710
        • Parikh A.
        • Leach T.
        • Wyant T.
        • et al.
        Vedolizumab for the treatment of active ulcerative colitis: a randomized controlled phase 2 dose-ranging study.
        Inflamm Bowel Dis. 2012; 18: 1470-1479
        • Rutgeerts P.
        • Van Assche G.
        • Sandborn W.J.
        • et al.
        Adalimumab induces and maintains mucosal healing in patients with Crohn’s disease: data from the EXTEND trial.
        Gastroenterology. 2012; 142: 1102-1111.e2
        • Watanabe M.
        • Hibi T.
        • Lomax K.G.
        • et al.
        Adalimumab for the induction and maintenance of clinical remission in Japanese patients with Crohn’s disease.
        J Crohns Colitis. 2012; 6: 160-173
        • Sandborn W.J.
        • van Assche G.
        • Reinisch W.
        • et al.
        Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis.
        Gastroenterology. 2012; 142 (e1-3): 257-265
        • Regueiro M.
        • El-Hachem S.
        • Kip K.E.
        • et al.
        Postoperative infliximab is not associated with an increase in adverse events in Crohn’s disease.
        Dig Dis Sci. 2011; 56: 3610-3615
        • Sandborn W.J.
        • Schreiber S.
        • Feagan B.G.
        • et al.
        Certolizumab pegol for active Crohn’s disease: a placebo-controlled, randomized trial.
        Clin Gastroenterol Hepatol. 2011; 9: 670-678.e3
        • Reinisch W.
        • Sandborn W.J.
        • Hommes D.W.
        • et al.
        Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial.
        Gut. 2011; 60: 780-787
        • Colombel J.
        • Sandborn W.
        • Reinisch W.
        • et al.
        Infliximab, azathioprine, or combination therapy for Crohn’s disease.
        N Engl J Med. 2010; 362: 1383-1395
        • Feagan B.G.
        • Greenberg G.R.
        • Wild G.
        • et al.
        Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin.
        Clin Gastroenterol Hepatol. 2008; 6: 1370-1377
        • Sandborn W.J.
        • Hanauer S.B.
        • Rutgeerts P.
        • et al.
        Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial.
        Gut. 2007; 56: 1232-1239
        • Schreiber S.
        • Khaliq-Kareemi M.
        • Lawrance I.C.
        • et al.
        Maintenance therapy with certolizumab pegol for Crohn’s disease.
        N Engl J Med. 2007; 357: 239-250
        • Sandborn W.J.
        • Feagan B.G.
        • Stoinov S.
        • et al.
        Certolizumab pegol for the treatment of Crohn’s disease.
        N Engl J Med. 2007; 357: 228-238
        • Sandborn W.J.
        • Rutgeerts P.
        • Enns R.
        • et al.
        Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial.
        Ann Intern Med. 2007; 146: 829-838
        • Targan S.R.
        • Feagan B.G.
        • Fedorak R.N.
        • et al.
        Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial.
        Gastroenterology. 2007; 132: 1672-1683
        • Colombel J.F.
        • Sandborn W.J.
        • Rutgeerts P.
        • et al.
        Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial.
        Gastroenterology. 2007; 132: 52-65
        • Sands B.E.
        • Kozarek R.
        • Spainhour J.
        • et al.
        Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission while receiving infliximab.
        Inflamm Bowel Dis. 2007; 13: 2-11
        • Lémann M.
        • Mary J.Y.
        • Duclos B.
        • et al.
        Infliximab plus azathioprine for steroid-dependent Crohn’s disease patients: a randomized placebo-controlled trial.
        Gastroenterology. 2006; 130: 1054-1061
        • Hanauer S.B.
        • Sandborn W.J.
        • Rutgeerts P.
        • et al.
        Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial.
        Gastroenterology. 2006; 130: 323-333
        • Rutgeerts P.
        • Sandborn W.J.
        • Feagan B.G.
        • et al.
        Infliximab for induction and maintenance therapy for ulcerative colitis.
        N Engl J Med. 2005; 353: 2462-2476
        • Sandborn W.J.
        • Colombel J.F.
        • Enns R.
        • et al.
        Natalizumab induction and maintenance therapy for Crohn’s disease.
        N Engl J Med. 2005; 353: 1912-1925
        • Schreiber S.
        • Rutgeerts P.
        • Fedorak R.N.
        • et al.
        A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease.
        Gastroenterology. 2005; 129: 807-818
        • Feagan B.G.
        • Greenberg G.R.
        • Wild G.
        • et al.
        Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin.
        N Engl J Med. 2005; 352: 2499-2507
        • Järnerot G.
        • Hertervig E.
        • Friis-Liby I.
        • et al.
        Infliximab as rescue therapy in severe to moderately severe ulcerative colitis: a randomized, placebo-controlled study.
        Gastroenterology. 2005; 128: 1805-1811
        • Winter T.A.
        • Wright J.
        • Ghosh S.
        • et al.
        Intravenous CDP870, a PEGylated Fab' fragment of a humanized antitumour necrosis factor antibody, in patients with moderate-to-severe Crohn’s disease: an exploratory study.
        Aliment Pharmacol Ther. 2004; 20: 1337-1346
        • Sands B.E.
        • Anderson F.H.
        • Bernstein C.N.
        • et al.
        Infliximab maintenance therapy for fistulizing Crohn’s disease.
        N Engl J Med. 2004; 350: 876-885
        • Probert C.S.
        • Hearing S.D.
        • Schreiber S.
        • et al.
        Infliximab in moderately severe glucocorticoid resistant ulcerative colitis: a randomised controlled trial.
        Gut. 2003; 52: 998-1002
        • Ghosh S.
        • Goldin E.
        • Gordon F.H.
        • et al.
        Natalizumab for active Crohn’s disease.
        N Engl J Med. 2003; 348: 24-32
        • Hanauer S.B.
        • Feagan B.G.
        • Lichtenstein G.R.
        • et al.
        Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial.
        Lancet. 2002; 359: 1541-1549
        • Sands B.E.
        • Tremaine W.J.
        • Sandborn W.J.
        • et al.
        Infliximab in the treatment of severe, steroid-refractory ulcerative colitis: a pilot study.
        Inflamm Bowel Dis. 2001; 7: 83-88
        • Rutgeerts P.
        • D’Haens G.
        • Targan S.
        • et al.
        Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease.
        Gastroenterology. 1999; 117: 761-769
        • Present D.H.
        • Rutgeerts P.
        • Targan S.
        • et al.
        Infliximab for the treatment of fistulas in patients with Crohn’s disease.
        N Engl J Med. 1999; 340: 1398-1405
        • D’Haens G.
        • Van Deventer S.
        • Van Hogezand R.
        • et al.
        Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn’s disease: a European multicenter trial.
        Gastroenterology. 1999; 116: 1029-1034
        • Targan S.R.
        • Hanauer S.B.
        • van Deventer S.J.
        • et al.
        A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease: Crohn’s Disease cA2 Study Group.
        N Engl J Med. 1997; 337: 1029-1035
      3. A phase II multi-center double-blind placebo-controlled parallel-group dose-response study to assess the safety and efficacy of CDP870/certolizumab pegol dosed subcutaneously in patients with active Crohn’s disease. Available at: https://clinicaltrials.gov/show/NCT00291668. Accessed June 30, 2016.

      4. A phase IIIb multicenter double-blind placebo-controlled randomized trial to examine the corticosteroid-sparing effect of certolizumab pegol in patients with moderate to severe Crohn’s disease (COSPAR I). Available at: https://clinicaltrials.gov/show/NCT00349752. Accessed June 30, 2016.

      5. Regueiro M, Feagan BG, Zou B, et al. Infliximab reduces endoscopic, but not clinical, recurrence of Crohn’s disease following ileocolonic resection. Gastroenterology (in press).

        • Lichtenstein G.R.
        • Feagan B.G.
        • Cohen R.D.
        • et al.
        Serious infection and mortality in patients with Crohn’s disease: more than 5 years of follow-up in the TREAT registry.
        Am J Gastroenterol. 2012; 107: 1409-1422
        • Schneeweiss S.
        • Korzenik J.
        • Solomon D.H.
        • et al.
        Infliximab and other immunomodulating drugs in patients with inflammatory bowel disease and the risk of serious bacterial infections.
        Gastroenterology. 2016; 150: 1568-1578
        • Van Assche G.
        • Van Ranst M.
        • Sciot R.
        • et al.
        Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease.
        N Engl J Med. 2005; 353: 362-368
        • Ford A.C.
        • Peyrin-Biroulet L.
        Opportunistic infections with anti-tumor necrosis factor-α therapy in inflammatory bowel disease: meta-analysis of randomized controlled trials.
        Am J Gastroenterol. 2013; 108: 1268-1276
        • Axelrad J.
        • Bernheim O.
        • Colombel J.F.
        • et al.
        Risk of new or recurrent cancer in patients with inflammatory bowel disease and previous cancer exposed to immunosuppressive and anti-tumor necrosis factor agents.
        Clin Gastroenterol Hepatol. 2016; 14: 58-64
        • Nyboe Andersen N.
        • Pasternak B.
        • Basit S.
        • et al.
        Association between tumor necrosis factor-α antagonists and risk of cancer in patients with inflammatory bowel disease.
        JAMA. 2014; 311: 2406-2413